
Executive Summary of Dagstuhl Seminar

XQuery Implementation Paradigms (06472)

Nov 19 – 22, 2006

Organizers: Peter A. Boncz (CWI Amsterdam, NL)
Torsten Grust (TU München, DE)
Jérôme Siméon (IBM TJ Watson Research Center, USA)
Maurice van Keulen (U Twente, NL)

Motivation and Seminar Topic

Only a couple of weeks after the participants of seminar No. 06472 met in Dagstuhl,
the W3C published the Final Recommendation documents that fix the XQuery 1.0
syntax, data model, formal semantics, built-in function library and the interac-
tion with the XML Schema Recommendations (see W3C’s XQuery web site at
http://www.w3.org/XML/Query/). With the language’s standardization nearing
its end and now finally in place, the many efforts to construct correct, complete,
and efficient implementations of XQuery finally got rid of the hindering “moving
target” syndrome. This Dagstuhl seminar on the different XQuery implementation
paradigms that have emerged in the recent past, thus was as timely as it could
have possibly been.

From the beginning, XQuery has been designed as a declarative language in
the style of modern functional programming languages. For the query author,
declarativity means that the formulation of queries solely depends on the desired
input and output—efficiency concerns should not have any impact at all. For
XQuery implementations, declarativity provides a sheer endless pool of alternative
strategies to consume and represent data model instances as well as to compile,
optimize, and execute queries. In principle, all of these strategies are acceptable
as long as they respect the language’s formal semantics.

This freedom has led to a plethora of, sometimes radically different, approaches
to the implementation of XQuery. It is characteristic for most of the implemen-
tation projects in this “zoo”, that a specific set of XQuery features drove their
initial development, e.g., the evaluation of XPath location steps or the efficient
implementation of nested FLWOR expressions and the derivation of equivalent
database-style join strategies. To this end, our colleagues out in the field ap-
plied existing techniques and devised new approaches rooted in the programming
language and database query language domains. Still, XQuery implementations
which excel in both, completeness and efficiency, are rare (if available at all) today.

1

Dagstuhl Seminar Proceedings 06472
XQuery Implementation Paradigms
http://drops.dagstuhl.de/opus/volltexte/2007/1022



It was the foremost goal of this seminar to bring together a vivid group of
academic and industrial researchers who are representatives of the distinct imple-
mentation camps that can be currently found in the XQuery landscape. In partic-
ular, the organizers tried to make sure that the native, relational, and streaming
implementation camps all had their fair share of participants. We are happy to
report that a total of 31 colleagues found their way to Dagstuhl—in effect, for
three days the castle saw a concentration of expertise in the XQuery language and
its implementation that goes unmatched even when compared to the major global
scientific conferences in the field.

Organization of the Seminar and Activities

Talks. The seminar featured an exciting program of presentations covering the
latest research and industrial advances in the area of XQuery implementation.

The first set of presentations were focused on the foundations of XQuery com-
pilation. They covered a wide range of techniques, starting with algebraic compila-
tion [Jens Teubner (TU München, DE), A Purely Relational Approach to XQuery ;
Jérôme Siméon (IBM Watson, USA), An Algebraic Compiler for An Expressive
XQuery Extension] which described XQuery engines developed using traditional
database approaches. Those were followed by the presentation of complementary
techniques targeted towards tree-pattern detection in algebraic plans [Philippe
Michiels (U Antwerp, BE), Put a Tree Pattern in Your Algebra]. Moving further
away from pure database techniques, the following talks discussed the impact of
choosing push vs. pull models in XQuery compilers and run-times [Michael Kay,
(Saxonica Ltd., UK) Push or Pull (Does it Make a Difference)? ], and the use of
functional programming optimizations for XQuery [Kristoffer Rose, (IBM Watson,
USA), Functional Optimizations of XQuery using Higher Order Rewriting ]. The
set of presentations underlined the variety and the complementary of the various
techniques, with an increasing number of system combining those techniques.

The second set of presentations focused on recent developments in the area of
XQuery benchmarking. There was a wide consensus among the seminar partici-
pants on the importance of developing benchmark suites that cover different classes
of usage of the language and are representative of the processing performed in real
applications. First, an overview of the most important efforts in that area were
presented [Loredana Afanasiev (U Amsterdam, NL), An Analysis of the Current
XQuery Benchmarks ], including XMach-1, XMark, X007, the Michigan bench-
mark, and XBench. Special attention was given to the MemBer micro-benchmark
which aims at evaluating the individual performance of XQuery implementations
for fundamental operations, notably path navigation, FLWOR expressions, and
element construction. Detailed overviews of two more recent efforts were also
presented. The first one being XPathMark [Massimo Franceschet (U Udine, IT),

2



XPathMark: functional and performance tests for XPath], which focuses on eval-
uating the conformance, completeness, and performance for XPath support in
existing implementations. The second, and maybe most ambitious, benchmark
presented was TPoX [Matthias Nicola, (IBM San Jose, USA) An Application-
oriented XML Transaction Processing Benchmark ] which had it first public an-
nouncement at this seminar. TPoX is an application-level benchmark based on
the FIXML dialect used in the financial industry. It includes query and update
workloads as well as a complete transaction manager which can simulate access by
simultaneous users over a large number of documents.

Finally, a third set of presentations explored more experimental development of
the language, including support for XML updates [Ying Zhang (CWI Amsterdam,
NL), Loop-lifted XQuery RPC with Deterministic Updates ], support for text search
[Paul Pedersen (FLWOR Foundation, USA), Searching for XQuery ], support for
distributed queries [Jérôme Siméon, Distributed XQuery ], transaction management
[Bettina Kemme (Mc Gill U, CA), Snapshot-based Concurrency Control for XML],
and the possible use of XQuery over file systems [Marc H. Scholl (U Konstanz,
DE), File Systems are Obsolete (!?)]. Those presentations are representative of
some of the most advanced research in the area, and are indicative of the on-going
interest in using XQuery for more advanced application development. Significant
challenges are still to be tackled in order to develop mature solutions in each of
those areas.

Breakout Sessions. The above presentations often triggered lively technical
discussions between seminar participants. Among the various aspects being dis-
cussed, a few specific topics that could benefit from further discussion were singled
out as breakout sessions. In each case, those breakout sessions resulted in a clearer
description of the most important problems, and some suggestions for possible so-
lutions. We report briefly on the outcome of those breakout sessions.

XQuery Benchmarking. The first breakout session focused on the area of XQuery
benchmarking. The XMark benchmark has been very popular for evaluating the
effectiveness of new compilation techniques. The main reasons for this are its sim-
plicity in generating data and the queries included in the benchmark. However,
the process of running the benchmark is not well-defined. Thus the interpreta-
tion of benchmark results is difficult. Additionally, participants believed the set of
queries included in XMark does not reflect the state of the XQuery specification
and queries formulated by users. As a result, it was recommended that future
benchmarks preserve the strengths of XMark while overcoming its shortcomings.
To this end the need to structure the process of defining both application or micro-
benchmarks should be enphasized, and the following bottom-up approach has been
proposed: (1) define relevant data sets, (2) define statement sets (i.e., queries and

3



updates), and (3) define the workload as a combination of statements. Finally,
it has been suggested to organize this process by using the MemBer repository
to manage datasets, queries, workloads, and discussions. Finally, in order to en-
courage a wide adoption of the resulting benchmark, the participants proposed to
assign the “Dagstuhl label” to the new benchmark and, hence, call it DMark.

Transactional Support for XQuery. The second breakout sessions focused on the
area of transactional support for XQuery. This session discussed the challenges
XML poses to efficient transaction management. It considered both the program-
ming interface and the internals of transaction management, and explored the
following questions. What kind of transaction model is appropriate for XML ap-
plications? Where should transaction boundaries be set? What isolation levels are
appropriate for XML applications? How can the ACID properties be implemented
in an XML engine? Do the techniques used to guarantee transactional properties
differ from those used in relational systems? How can distributed transactions be
handled? The area of transactions management for XQuery is still largely unex-
plored and the participants felt further research in that important area should be
encouraged.

XQuery Applications. The third breakout session focused on the area of XQuery
and its applications. This breakout disussion focused on the functionality of
XQuery from two perspectives. (1) Application view: The functionality is very
rich (maybe too rich), making it difficult to understand all subtleties. On the
other hand, there may even be the need to add some selected additional func-
tionality (such as some imperative language features). (2) Implementation view:
The functionality is very rich and some parts of the semantics make an (efficient!)
implementation difficult. Participant believed that in many cases, standards in
the area of query languages resulted in powerful languages, but that in many cases
typical application make use of only a small fraction of the overall functionality.
As a result, they encouraged the identification of a small and simple subset of
XQuery as a language kernel and package additional functionality as predefined
sets of optional features. This could be proposed as an item on an XQuery 2.0 wish
list. The discussion could not, obviously, identify this small “kernel” vs. the “ex-
tension packages.” Two sample features played a role in the discussion: recursion
and (imperative) variables with assignments (see XQueryP).

XQuery Compiler Interoperability. The fourth breakout session focused on the
area of interoperability between XQuery compilers. This discussion resulted from
the observation that several existing implementations shared common principles,
and often had complementary strengths. An important observation resulting from
that discussion is that greater interoperability between systems should result in
the ability to share development more easily, to facilitate a meaningful comparison
between systems, and to enable a greater reuse of research results between those

4



systems. Several research groups represented among the participants agreed to
explore the possibilty to develop APIs and intermediate languages to improve
interoperability between their implementations.

XQuery Hard Nuts. Last, the seminar was concluded by a lively session on
so-called XQuery hard nuts. The purpose of that session was to solicitates from the
participant examples of queries over XML data which they believed are difficult
to express, or to evaluate efficiently. In each case, an effort was made to identify
research problems that could be inferred from those examples. We briefly give here
only an overview of those examples. The corresponding XQueries in each case can
be found on the Web page of the seminar.

Massimo Franceschet presented an example of a recursive functions in XQuery
which implements a transitive closure of a location path over the XMark docu-
ment. This example emphasized the importance and difficulty in evaluating highly
recursive XQueries.

Torsten Grust (TU München, DE) presented an example that illustrated the
need to use functional programming optimization techniques such as memoization.
The example illustrated a common idiom where the same function is called many
different times over the same parameters.

Jérôme Siméon presented three different examples. The first example illus-
trated the need to support join optimization combined with a recursive function.
The second example showed a simple recursive transform for which streaming
has been shown to provide considerable speedup compared to currently proposed
XQuery compilation techniques. The third example emphasized the need for in-
creasing the robustness of optimization in existing XQuery compilers. This last
example featured a set of XQueries which are semantically equivalent but syntac-
tically quite different and challenged the participant to build compilers which can
equally optimize those different queries.

Finally, Maurice van Keulen (U Twente, NL) presented two examples. The
first example again involved recursion. He argued that recursion usually struc-
turally “follows” the XML hierarchy (by descending into an XML tree), the order
in sequences, some diminishing computation, or a combination thereof. He also
argued that such cases are currently very hard to support using some of the ex-
isting compilation approaches, notably based on algebras. The second example
illustrated a common pattern in his experience where some part of the code is
used to build intermediate data structure, while another part of the code is used
to access those structure. He observed that the intermediary structures are not
really necessary, and challenged the participant to develop techniques which could
detect when such computation patterns could “cancel each other out”.

5



Concluding Remarks and Future Plans

The functional nature of the XQuery language makes it particularly amenable to
implementation techniques developed in the functional programming languages do-
main (this point was made by Kristoffer Rose, Philippe Michiels, Jérôme Siméon,
Maurice van Keulen, and Torsten Grust). It is indeed perceivable to define faith-
ful reformulations of the XQuery semantics in terms of combinator languages or
variants of monad comprehensions, two expressions forms from which efficient
database-style algebraic plans can be derived. A group of seminar participants
will engage in an effort to further develop and study a (unified) algebraic rep-
resentations for XQuery (see fourth breakout session). Ideally, this will lead to
interoperability between some of the many promising XQuery implementation ef-
forts.

We hoped that the participants were prepared and willing to teach each other
in a constructive fashion and we were lucky to find exactly that during the seminar
days. Dagstuhl greatly helped to create an atmosphere in which the formerly sepa-
rate camps collaboratively worked on the syntheses of proven XQuery compilation
and evaluation techniques.

The organizers would like to sincerely thank the Dagstuhl Scientific Direc-
torate of Dagstuhl castle and are looking forward to put forward a follow-up
seminar proposal which will reflect the then current developments around the
XQuery language. Quite possibly this will include XQuery 1.1, whose initial re-
quirements analysis phase has started just as we write this, and the forthcoming
XQuery Scripting Extension which will bring the worlds of functional XML query-
ing and stateful programming even closer together.

6


